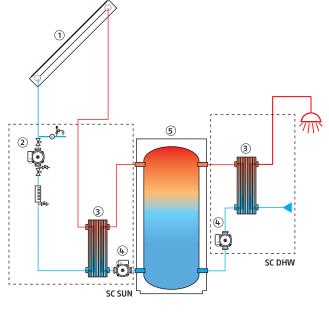
Solar thermal

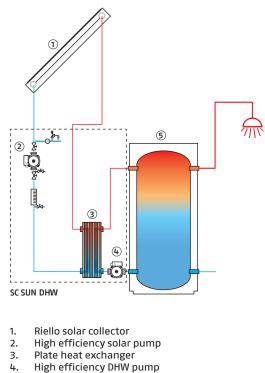
SC SUN Solar heat exchanger

SC SUN solar heat exchanger SC SUN DHW solar heat exchanger fo domestic hot water


SC SUN

PRODUCT DESCRIPTION

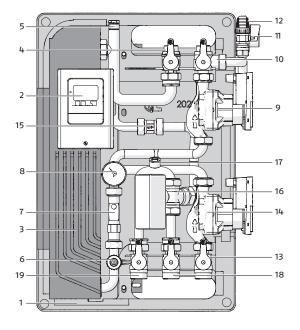
Complete, ready-to-install solutions even when external heat stratification is preferred, by means of heat exchangers for both solar and DHW.


SC SUN is a solar heat exchanger equipped with inertia tanks whose components are sized and managed to transfer heat with maximum efficiency. The range is offered in three sizes: up to 50, 120 and 200 m² of exposed solar surface. A solar heat exchanger for instant domestic hot water production is also available, with 120 m² of exposed solar surface.

SCHEMATIC DIAGRAM

- 1. Riello solar collector
- 2. High efficiency solar pump
- 3. Plate heat exchanger
- 4. High efficiency pump
- 5. Riello puffer 7000

NOTE: Example schematic diagram

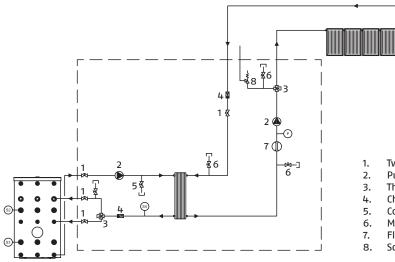

- 5. Riello 7200/3F HV
- NOTE: Example schematic diagram

SC SUN 50 SOLAR MODULE

SC SUN 50 is a separation module with a plate heat exchanger designed to supply energy to two thermal storage tanks (puffers) or to two different charge heights of a single storage tank (puffer), using a solar thermal system with collector array. The electronic adjustment system controls the speed of the high efficiency pump (with PWM function) in the primary circuit, thus ensuring optimal energy utilisation and management. The secondary circuit includes an electronic flow meter for displaying the flow rate and counting the quantity of heat exchanged.

SC SUN 50, complete with thermal insulation, is prewired, tested and ready to use.

Structure



- **EPP** insulation 1.
- Electronic regulator 2.
- Exchanger 3.
- PRIMARY CIRCUIT
- Primary delivery ball valve 4.
- Relief valve
- 5.
- 6. Fill/drain valve Flow meter with temperature sensor 7.
- 8. Pressure gauge
- 9.
- Pump
- 3-way primary return valve 10.
- 11. Solar system fill/drain valve
- Safety valve 12.

SECONDARY CIRCUIT

- 13. Secondary delivery valve
- Pump 14.
- Check valve 15.
- Motorised diverter valve 16.
- 17. **Relief valve**
- 18. Puffer 1 return valve
- Puffer 2 return valve 19.

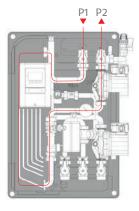
Hydraulic circuit

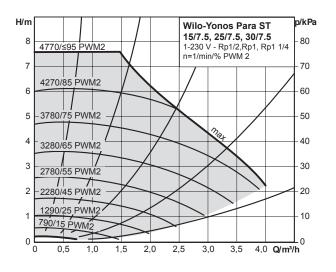
Two-way valve

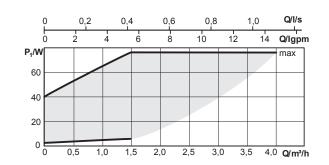
§1)

- Pump
- Three-way diverter valve
- Check valve
- Cock with cap
- . Manual relief valve
- Flow meter with temperature sensor
- Solar safety valve

Technical data SC SUN 50

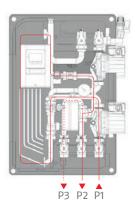

UM	Model	SC SUN 50
kW	Heat input exchanged	32
//h	Primary maximum flow rate	1500
l/min	Secondary maximum flow rate	19.2
O	DT primary circuit	20.0
O	DT primary input/secondary output	4.0
m²	Surface of panels	50
	Minimum admitted temperature	2
O	Maximum operating pressure	110
bar	Maximum operating pressure primary side	10
mbar	Primary check valve opening pressure	45
mbar	Secondary check valve opening pressure	20
W	rimary pump electrical power input (max/standby)	38 / 1
W	ondary pump electrical power input (max/standby)	23 / 1
W	Solar controller electrical power input (standby)	0.5
%	Solar controller energy efficiency	1
V	Power supply voltage	230
Hz	Power supply frequency	50-60
IP	Electrical protection rating	40
kg	Net weight	22.8
	Water volume	6.8
mm1	Plate dimensions: Width (W) x Height (H) x Depth (D)	117 x 524 x 2.25
no.	Number of plates	16
m²	Exchange surface	0.88
mm 4	Dimensions: Width (W) x Height (H) x Depth (D)	400 x 600 x 260

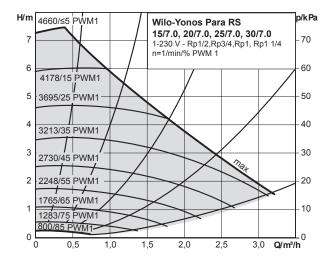

Pump characteristic curves (residual head and power consumption)

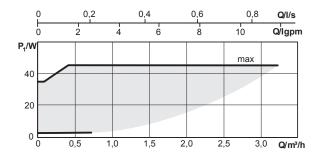

Primary circuit

Type: Wilo Yonos Para ST 15/7.5

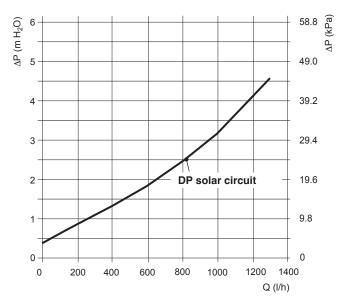
Speed	n	rpm	800 - 4770
Power consumption 1 – 230 V	P1	W	3 - 76
Current at 1 – 230 V	1	A	0.03 - 0.70
Max. head	н	m	7.6
Max. flow rate	G	l/h	4000

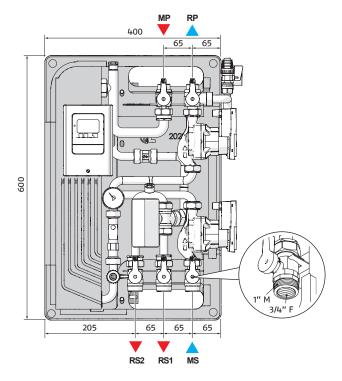




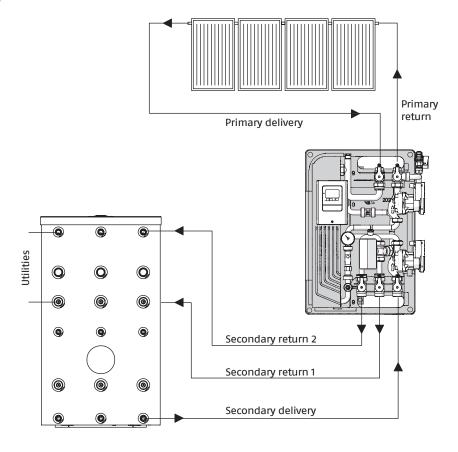


Secondary circuit Type: Wilo Yonos Para RS 15/7.0

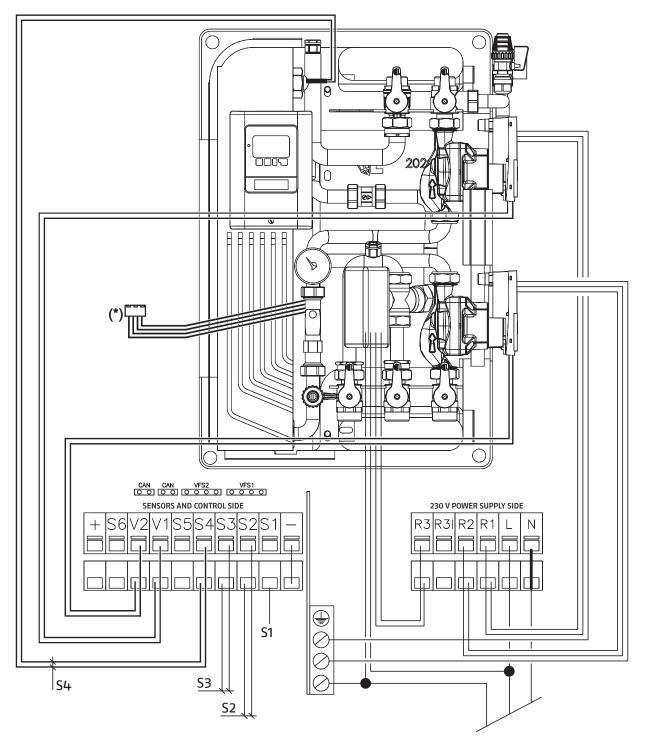

Speed	n	rpm	800 - 4660
Power consumption 1 – 230 V	P1	W	3 - 45
Current at 1 – 230 V	1	Α	0.03 - 0.44
Max. head	н	m	7.2
Max. flow rate	G	l/h	3300


Primary circuit head loss

NOTE: to calculate the usable head on the solar circuit, subtract the internal circuit's head loss shown in the graph below from the head of the primary pump.


Solar heat exchangers

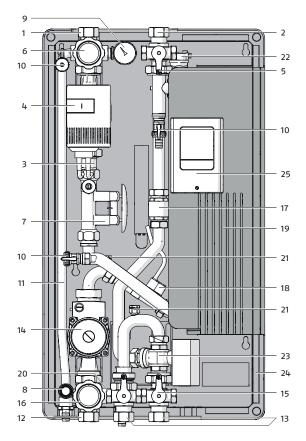
Dimensions and Fittings



MP – Primary delivery	Ø 22 mm pipe ogive connection
RP - Primary return	Ø 22 mm pipe ogive connection
MS – Secondary delivery	1" M - 3/4" F
RS1 – Secondary return 1	1″ M – 3/4″ F
RS2 – Secondary return 2	1″ M - 3/4″ F

System diagram

Wiring diagram

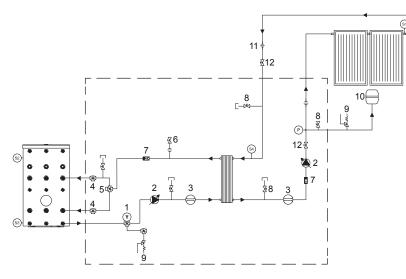

- Solar collector sensor DO NOT WIRE! High/1 puffer sensor S1
- S2
- S3 Low/2 puffer sensor
- S4 (*) Secondary delivery sensor
- To be routed into controller terminal VFS1
- V1
- Primary pump PWM signal Secondary pump PWM signal V2
- R1 Primary pump relay
- R2 Secondary pump relay
- R3 Diverter valve relay

SOLAR MODULES SC SUN 120 AND SC SUN 120 DHW

SC SUN 120 and SC SUN 120 DHW are a separation module and a domestic hot water production module, respectively. Both are fitted with a plate heat exchanger designed to supply energy to two thermal storage tanks (puffers) or to two different charge heights of a single storage tank (puffer), using a solar thermal system (high-flow or low-flow) with collector array. The electronic adjustment system controls the speed of the high efficiency pump (with 0-10 V function) in the primary circuit, thus ensuring optimal energy utilisation and management. The secondary circuit in both modules includes an electronic flow meter for displaying the flow rate and counting the quantity of heat exchanged.

SC SUN 120 and SC SUN 120 DHW modules, complete with thermal insulation, are prewired, tested and ready to use.

Structure


PRIMARY circuit

- 3-way ball valve DN25 1" F 1.
- Ball valve DN25 1" F 2.
- 3. Check valve
- 4. Solar pump
- 5. Red handle
- Blue handle with thermometer 6.
- Flow regulator 7.
- 8. Solar safety valve
- Pressure gauge 9.
- 1/2" fill-drain valve 10.
- 11. Pipe for expansion vessel connection

SECONDARY CIRCUIT

- 3-way ball valve DN25 1" F 12.
- 13. Ball valve DN25 1" F
- System pump 14.
- Red handle 15.
- Blue handle with thermometer 16.
- 17. Check valve
- 18. VFS flow sensor Plate heat exchanger
- 19. 20. Safety valve
- 21.
- Manual relief valve 22. Robocal air vent
- 23. Motorised diverter valve
- Black EPP insulation 40 g/l 24.
- 25.
- Electronic regulator

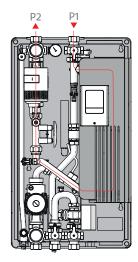
Hydraulic circuit

- Three-way ball valve with thermometer
- 2. Modulating pump

1.

- Flow indicator 3.
- Three-way shut-off valve 4.
- Three-way diverter valve 5.
- Manual relief valve 6.
- 7. Check valve
- Manual discharge valve with cap 8.
- 9. Safety valve
- Expansion vessel 10.
- 11. Three-piece joint
- 12. Shut-off valve

Technical data SC SUN 120 - SC SUN 120 DHW

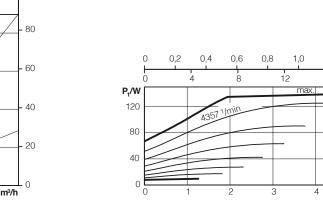

	Model	UM	SC SUN 120	SC SUN 120 DHW
Heat inpu	texchanged	kW	52	52
Primary maxim	um flow rate	l/h	2400	2400
Secondary maxim	um flow rate	l/min	40	40
DT pr	imary circuit	°C	20	20
Surfa	ace of panels	m²	80	80
Minimum admitted	temperature	°C	2	2
Maximum operat	ing pressure	°C	110	110
Maximum operating pressure	primary side	bar	10	10
Primary check valve open	ing pressure	mbar	45	45
Secondary check valve open	ing pressure	mbar	20	20
Primary pump electrical power input (m	ax/standby)	W	70 / 1.44	70 / 1.44
Secondary pump electrical power input (m	iax/standby)	W	23 / 1	23 / 1
Solar controller electrical power inp	ut (standby)	W	0.5	0.5
Solar controller ener	gy efficiency	%	1	1
Power su	ipply voltage	V	230	230
Power supp	ly frequency	Hz	50-60	50-60
Electrical prote	ection rating	IP	40	40
	Netweight	kg	32	32
W	later volume	1	12.6	12.6
Plate dimensions: Width (W) x Height (H	l) x Depth (D)	mm	117 x 525 x 2.25	117 x 525 x 2.25
Num	ber of plates	no.	50	50
Excha	ange surface	m ²	3.02	3.02
Dimensions: Width (W) x Height (H	l) x Depth (D)	mm	475 x 835 x 226	475 x 835 x 226

Pump characteristic curves (residual head and power consumption)

Primary circuit

Type: Wilo Stratos Para 25/1–11

Speed	n	rpm	1400 - 4850
Power consumption 1 – 230 V	P1	W	8 - 140
Current at 1 – 230 V	1	A	0.07 - 1.05
Max. head	Н	m	11
Max. flow rate	G	l/h	4500



1,2

16

1,4

5

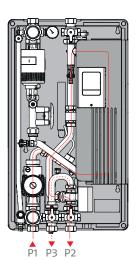
External control mode via Analog-In 0-10 V

H/m	4850 ¹ /min - 10 V	Wilo-Stratos-Para	p/kPa
10	4357 1/min - 9 V	25/1-11, 30/1-11 1~230 V - Rp1, Rp1¼ 0-10 V	- 100
8	3864 1/min - 8 V		- 80
6	3371 ¹ /min - 7 V		- 60
4	2879 1/min - 6 V		- 40
2	2386 1/min - 5 V - 1893 1/min - 4 V		- 20
0	1400 1/min - 3V	3 4 5 Q/m³/h	- 0

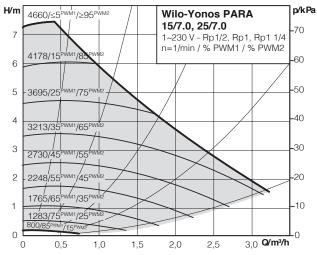
Q/m³/h

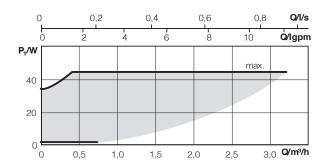
Q/I/s

Q/Igpm

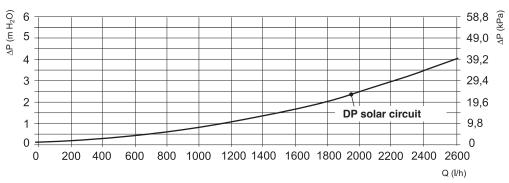

SOLAR THERMAL

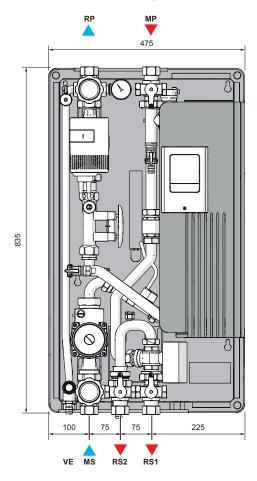
Solar heat exchangers

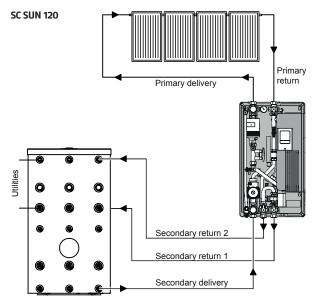

Secondary circuit

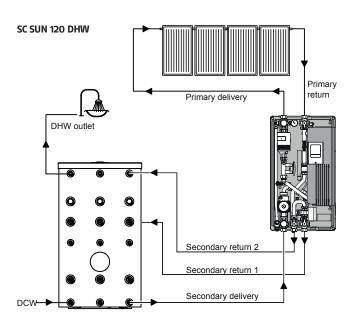

Type: Wilo Yonos Para RS 15/7.0

Speed	n	rpm	800 - 4660
Power consumption 1 – 230 V	P1	W	3 - 45
Current at 1 – 230 V	1	A	0.03 - 0.44
Max. head	Н	m	7.2
Max. flow rate	G	l/h	3300

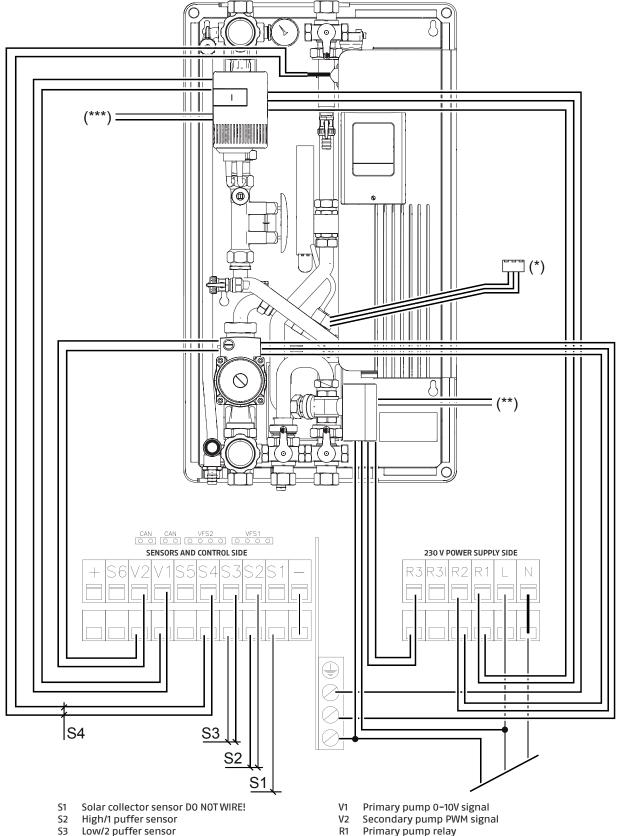





NOTE: to calculate the usable head on the solar circuit, subtract the internal circuit's head loss shown in the graph below from the head of the primary pump.


Dimensions and Fittings

1" F
1″ F
1" F
 1" F
3/4" M

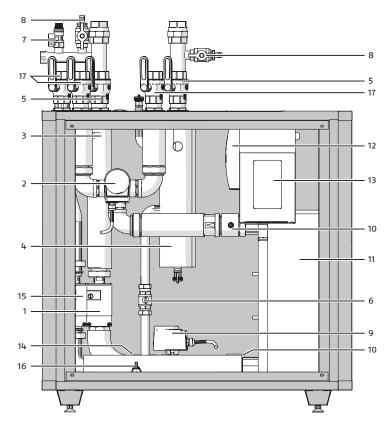

System diagram

Solar heat exchangers

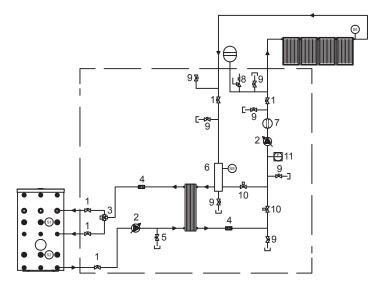
Wiring diagram

- S3 Low/2 puffer sensor
- Secondary delivery sensor
 (*) To be routed into control unit terminal VFS1
 (**) Trim orange/black cable (NC)
 (***) Trim blue/black cable (NC)

- Primary pump relay
- Secondary pump relay Diverter valve relay R2
- R3


SOLAR MODULES SC SUN 300

SC SUN 300 are a separation module and a domestic hot water production module, respectively. Both are fitted with a plate heat exchanger designed to supply energy to two thermal storage tanks (puffers) or to two different charge heights of a single storage tank (puffer), using a solar thermal system (high-flow or low-flow) with collector array.


The electronic adjustment system controls the speed of the high efficiency pump (with 0–10 V function) in the primary circuit, thus ensuring optimal energy utilisation and management. The secondary circuit in both modules includes an electronic flow meter for displaying the flow rate and counting the quantity of heat exchanged.

SC SUN 300 modules, complete with thermal insulation, are prewired, tested and ready to use.

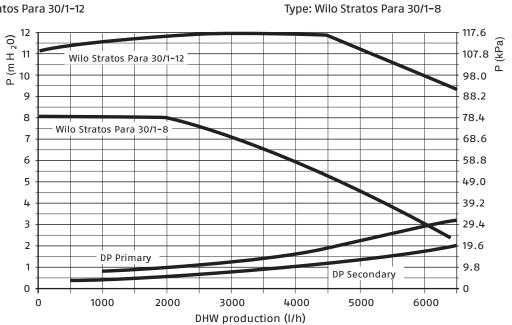
Structure

Hydraulic circuit

PRIMARY circuit

- Solar circuit pump
- 2. 3-way ball valve F-F-F 11/2"
- Flow / temperature Vortex Flow Sensor 200 I/ min 1¼"
- 4. Degasser pipe with manual relief valve
- 5. Solar circuit ball valve in sanded brass F-F 11/2''
- Primary bypass motorised two-way valve M-M 1"
- 7. Kit with safety valve 10 bar
- 8. Kit with solar system fill/drain valve
- 9. Motorised 2-way primary return valve F-F 11/2"
- 10. Check valve in sanded brass F-F 11/2"
- 11. Stainless steel plate heat exchanger
- 12. Electrical power panel with circuit breaker
- 13. XTDC electronic regulator
- 14. Pressure-temperature sensor RPS 1 8 bar
- 15. Heating circuit pump
- 16. Fill/drain valve
- 17. Heating circuit ball valve in sanded brass F–F $_{11\!/\!2^{\prime\prime}}$

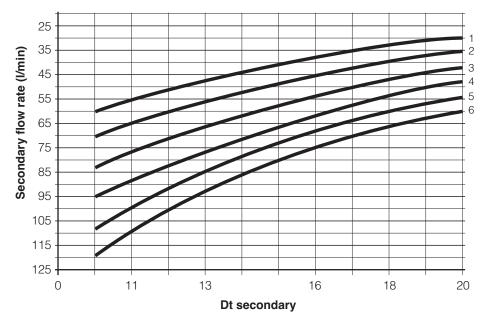
- 1. Two-way valve
- 2. Modulating pump
- 3. Three-way diverter valve
- 4. Check valve
- 5. Cock with cap
- 6. Degasser pipe with manual relief valve
- 7. Flow meter with temperature sensor
- 8. Solar safety valve
- 9. Drain valve
- 10. Two-way valve
- 11. Pressure transducer


Technical data SC SUN 300

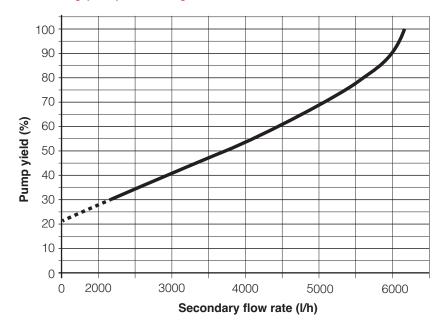
Model	UM	SC SUN 300
Heat input exchanged	kW	129
Primary maximum flow rate	l/h	6000
Secondary maximum flow rate	l/min	116.7
DT primary circuit	°C	20
Surface of panels	m²	200
Minimum admitted temperature	°C	2
Maximum operating pressure	°C	110
Maximum operating pressure primary side	bar	10
Primary check valve opening pressure	mbar	40
Secondary check valve opening pressure	mbar	40
Primary pump electrical power input (max/standby)	W	155 / 1.72
Secondary pump electrical power input (max/standby)	W	70 / 1
Solar controller electrical power input (standby)	W	0.5
Solar controller energy efficiency	%	1
Power supply voltage	V	230
Power supply frequency	Hz	50-60
Electrical protection rating	IP	40
Net weight	kg	155
	I	45
Plate dimensions: Width (W) x Height (H) x Depth (D)	mm	243 x 525 x 2.29
Number of plates	no.	60
Exchange surface	m²	7.66
Dimensions: Width (W) x Height (H) x Depth (D)	mm	1000 x 1140 x 500

Characteristic and head loss curves

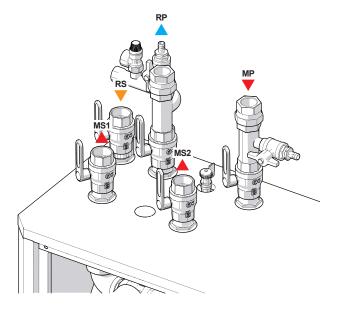
Solar primary circuit


Type: Wilo Stratos Para 30/1-12

Puffer secondary circuit


NOTE: to calculate the usable head of the two pumps, subtract the internal circuit's head loss shown in the graph from the head.

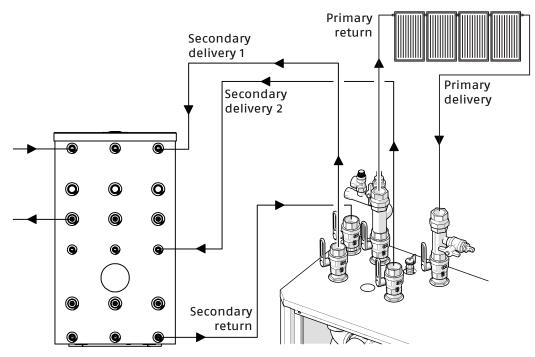
Secondary circuit yield


- 1. 200 m² solar (100 l/min)
- 2. 180 m² solar (90 l/min)
- 3. 160 m² solar (80 l/min)
- 4. 140 m² solar (70 l/min)
- 5. 120 m² solar (60 l/min)
- 6. 100 m² solar (50 l/min)

NOTE: Assuming primary operation 0.5 l/min*m² – DT 12°C (95°C – 83°C) / Secondary delivery 90°C.

Secondary pump efficiency (%)

Dimensions and Fittings


RP – Primary return (solar)	11/2″ F
MP – Primary delivery (solar)	11/2" F
RS – DHW recirculation	11/2″ F
MS1 – Secondary delivery 1	11/2″ F
MS2 – Secondary delivery 2	11/2″ F

Dimensions:


Height	1140 mm (including fittings)
Width	1000 mm
Depth	500 mm

We recommend leaving a clearance of at least 50 cm around the device to allow for inspections and maintenance.

System diagram

Wiring diagram

- High puffer sensor S1
- Low puffer sensor S2
- S5 Exchanger sensor
- S8 Solar collector sensor
- V1 Pump 1 speed check
- V2 Pump 2 speed check
- C1 Primary pump

- С2 Secondary pump
- (*) (**) To frame
- SD Card slot for Data logging and updating firmware. Make sure the SD card is facing the right way! The card must be inserted without pressure!

DESCRIPTION OF LTDC REGULATOR FOR MODULES SC SUN 50 - 120 - 120 DHW - 300

INFORMATION ON CONTROLLER

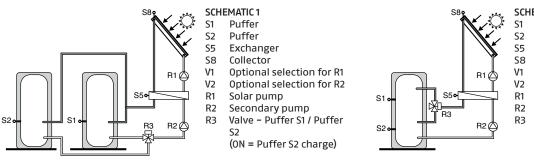
The differential controller LTDC4 enables efficient use and control of the solar or heating system. The display enables simple, almost self-explanatory, operation of the controller. Data at each programming stage are associated with certain functions and explained with text.

The LTDC4 can be used as a temperature difference controller for various types of system. The controller is supplied with all the above parameters set to default at the factory; these parameters can be reset by an authorised technician according to user requirements. The controller's menu contains key words for settings and measured values, as well as help text and graphics.

Main characteristics of the LTDC4:

- Description of graphics and text on the display
- Simple viewing of the current measured values
- System analysis and monitoring by means of statistical graphics, etc.
- Extensive setting menus with explanations
- PWM and 0-10V output
- The menu can be blocked to prevent unintentional changes
- Reset to previously selected values or factory settings
- Wide range of additional functions.

TECHNICAL SPECIFICATIONS


Electrical specifications		Permitted climatic conditions:			
Voltage	230VAC +/- 10%	Ambient temperature:			
Frequency	50-60Hz	for controller operation	0°C-40°C		
Current consumption	2VA	for transport/storage	0°C-60°C		
Contact power		Air humidity:			
Electronic relay R1	min. 5W / max 120W for AC3	for controller operation	max. 85% relative humidity with 25°C		
Electronic relay R2	min. 5W / max 120W for AC3	for transport/storage	No humidity condensate permitted		
Mechanical relay R3	460VA for AC1 / 185W for AC3	Permitted climatic conditions:			
PMV output	For work resistance 10 k Ω	Enclosure	3 parts, ABS plastic		
Internal fuse	2A slow-blow 250V	External dimensions	163 mm x 110 mm x 52 mm		
Protection rating	IP40	Clearance for installation	157 mm x 106 mm x 31 mm		
Protection class	II	Display	Large graphical display, 128 x 128 dots		
Sensor inputs	6 x Pt1000 + 2 x Vortex flow sensor (VFS)	LED	Multi-coloured green / red		
Measuring range	PT 1000 -40°C up to 300°C	Programming	4 buttons		
Vortex sensor	0°C to 100°C (-25°C /120°C rapid)	Temperature sensors			
	1 l/min - 12 l/min (VFS1-12)	Collector or boiler sensor	Pt1000, e.g. TT/S2 up to 180°C		
	2 I/min - 40 I/min (VFS2-40)	Puffer sensor	Pt1000, e.g. TR/P4 up to 95°C		
	5 l/min - 100 l/min (VFS5-100)	Contact sensor	Pt1000, e.g. contact sensor TR/P4 up to 95%		
	10 l/min - 200 l/min (VFS10-200)	Sensor range	Pt1000: 2 x 1mm ² up to max. 30m		

RESISTANCE/TEMPERATURE TABLE FOR PT1000 SENSORS

°C	0	10	20	30	40	50	60	70	80	90	100
Ω	1000	1039	1077	1116	1155	1194	1232	1270	1308	1347	1385

Possible schematics

The possible schematics for the SC SUN 300 module are number 1 and number 2, shown in the images below.

SCHEMATIC 2

- 51 High puffer
- 2 Low puffer
- 5 Exchanger
- Collector
- Optional selection for R1 Optional selection for R2
- R1 Solar pump
- R2 Secondary pump
- 3 Valve High pump
 3 Valve High pump
 3 Low puffer
 3 S2 (0N = Low puffer S2 charge)

SC SUN 50

PRODUCT DESCRIPTION FOR SPECIFICATIONS

Separation module with a plate heat exchanger designed to supply energy to 2 puffers or to 2 different charge heights, using a solar thermal system with collector array.

UNIT SPECIFICATIONS

- Maximum operating pressure 10 bar.
- Fully insulated AISI 316 stainless steel braze welded plate heat exchanger, 31.3 kW power exchanged and 50 m² solar system coverage (25 I/min nominal flow rate on primary).
- Black EPP thermal insulation with a density of 40 g/l, with the controller thermically insulated from the hydraulic unit to prevent electronic malfunctions.
- Wall installation template designed for rapid wall-mounting for quicker and easier installation.
- 50/60 Hz operation.
- VFS 2-40 I/min flow meter with integrated temperature sensor directly controlled from the standard electronic controller which, combined with the PWM2-controlled electronic pump on the primary, ensures maximum efficiency of the solar system.
 Primary circuit equipped with:
- solar fluid inlet with DN20 1" M 3/4" F ball valve with red handle and thermometer
- check valve
- manual relief valve
- 2 fill/drain valves, VFS 2-40 l/min flow and temperature sensor
- pressure gauge
- class A low-consumption pump
- outlet with DN20 1" M $\frac{3}{4}$ " F ball valve with blue handle and thermometer
- safety valve with 6 bar calibration.
- Wilo Yonos PARA ST 15/7.5 primary low-consumption pump (ErP ready 2015) directly controlled from the on-board electronic controller through PWM2 signal, max. head 7.6 m, max. flow rate 4000 l/h, suitable for water-glycol mixtures.
- Secondary circuit equipped with:
- technical water inlet with DN20 1" M $\frac{3}{4}$ " F ball valve with blue handle
- low-consumption pump ErP ready 2015
- check valve
- motorised diverter valve
- technical water outlet with 2 DN20 1" M 3/4" F ball valves with red handles.
- Wilo Yonos PARA RS 15/7.0 secondary low-consumption pump (ErP ready 2015) directly controlled from the on-board electronic controller through PWM1 signal, max. head 7.2 m, max. flow rate 3300 l/h.
 - Electronic weather compensator LTDC4 complete with:
 - 6 inputs for Pt1000 temperature sensors
 - 2 inputs for Vortex flow sensors (VFS) for calculating quantity of heat exchanged
 - 3 relay outputs
 - 2 PWM or 0-10 V outputs
 - large user-friendly graphical display
 - simple viewing of the current measured values
 - system analysis and monitoring by means of statistical graphics.
- Operating temperature range 2–110 °C
- Electrical protection rating IP40.

SC SUN 120 - SC SUN 120 DHW

PRODUCT DESCRIPTION FOR SPECIFICATIONS

SC SUN 120 is a separation module with a plate heat exchanger designed to supply energy to 2 puffers or to 2 different charge heights. SC SUN 120 DHW is a heat exchange module for DHW production designed to supply DHW to 2 tanks or to 2 different charge heights. Heat exchange modules are designed to use a solar thermal system with collector array.

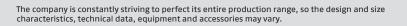
UNIT SPECIFICATIONS

- Maximum operating pressure 10 bar.
- Fully insulated AISI 316 stainless steel braze welded plate heat exchanger, 52 kW power exchanged and 120 m² solar system coverage (40 l/min nominal flow rate on primary).
- Black EPP thermal insulation with a density of 40 g/l, with the controller thermically insulated from the hydraulic unit to prevent electronic malfunctions.
- Wall installation template designed for rapid wall-mounting for quicker and easier installation.
- 50/60 Hz operation.
- Primary circuit equipped with:
 - solar delivery with DN25 1" F ball valve with red handle
 - 2 x ½" fill-drain valves
 - flow regulator with 10 40 l/min calibration range
 - check valve
 - class A low-consumption pump
 - solar return with DN25 1" F ball valve with blue handle and thermometer
 - expansion vessel connection pipe
 - 0-10 bar pressure gauge
- solar safety valve with 6 bar calibration.
- Wilo Yonos PARA 25/1-11 primary low-consumption pump (ErP ready 2015) directly controlled from the on-board electronic controller through 0-10 V signal, max. head 11 m, max. flow rate 4500 l/h, suitable for water-glycol mixtures.
- Secondary circuit equipped with:
- technical water (or DCW) inlet with DN25 1" F 3-way ball valve with blue handle and thermometer
- technical water (or DCW) circuit safety valve 6 bar
- class A low-consumption pump
- 2 x ¼" manual relief valves
- flow rate and temperature sensor VFS 5 100 I/min
- Robocal air vent
- sensor sheath
- check valve
- motorised diverter valve
- technical water (or DHW) outlet with 2 DN25 1" F ball valves with red handles.
- Wilo Yonos PARA RS 15/7.0 (SC SUN 120) and Wilo Yonos PARA Z 15/7.0 (SC SUN 120 DHW) secondary low-consumption pump (ErP ready 2015) directly controlled from the on-board electronic controller through PWM1 signal, max. head 7.2 m, max. flow rate 3300 l/h.
- Electronic weather compensator LTDC4 complete with:
- 6 inputs for Pt1000 temperature sensors
- 2 inputs for Vortex flow sensors (VFS) for calculating quantity of heat exchanged
- 3 relay outputs
- 2 PWM or 0-10 V outputs
- large user-friendly graphical display
- simple viewing of the current measured values
- · system analysis and monitoring by means of statistical graphics.
- Operating temperature range 2-110 °C.
- · Electrical protection rating IP40.

•

SC SUN 300

PRODUCT DESCRIPTION FOR SPECIFICATIONS


SC SUN 300 is a separation module with a plate heat exchanger designed to supply energy to 2 puffers or to 2 different charge heights. Heat exchange modules are designed to use a solar thermal system with collector array.

UNIT SPECIFICATIONS

- Maximum operating pressure 10 bar.
- Fully insulated AISI 316 stainless steel braze welded plate heat exchanger, 129 kW power exchanged and 200 m² solar system coverage (40 l/min nominal flow rate on primary).
- Black EPP thermal insulation with a density of 40 g/l, with the controller thermically insulated from the hydraulic unit to prevent electronic malfunctions.
- Wall installation template designed for rapid wall-mounting for quicker and easier installation.
- 50/60 Hz operation.
- Primary circuit equipped with:
- solar delivery with DN25 1" F ball valve with red handle
- 2 x 1/2" fill-drain valves
- flow regulator with 10 40 l/min calibration range
- check valve
- class A low-consumption pump
- solar return with DN25 1" F ball valve with blue handle and thermometer
- expansion vessel connection pipe
- 0-10 bar pressure gauge
- solar safety valve with 6 bar calibration.
- Wilo Stratos PARA 30/1–12 primary low-consumption solar pump (ErP ready 2015) directly controlled from the on-board electronic controller through 0–10 V signal, max. head 11 m, max. flow rate 6000 l/h, suitable for water-glycol mixtures.
- Secondary circuit equipped with:
- technical water (or DCW) inlet with DN25 1" F 3-way ball valve with blue handle and thermometer
- technical water (or DCW) circuit safety valve 6 bar
- class A low-consumption pump
- 2 x ¼" manual relief valves
- flow rate and temperature sensor VFS 5 100 I/min
- Robocal air vent
- sensor sheath
- check valve
- motorised diverter valve
- technical water (or DHW) outlet with 2 DN25 1" F ball valves with red handles.
- Wilo Stratos PARA 30/1-8 secondary low-consumption pump (ErP ready 2015) directly controlled from the on-board electronic controller through PWM1 signal, max. head 8 m, max. flow rate 6000 l/h.
- Electronic weather compensator LTDC4 complete with:
- 6 inputs for Pt1000 temperature sensors
- 2 inputs for Vortex flow sensors (VFS) for calculating quantity of heat exchanged
- 3 relay outputs
- 2 PWM or 0-10 V outputs
- large user-friendly graphical display
- simple viewing of the current measured values
- system analysis and monitoring by means of statistical graphics.
- Operating temperature range 2–110 °C.
- Electrical protection rating IP40.

RIELLO S.p.A. – 37045 Legnago (VR) tel. +39 0442 630111 – fax +39 0442 630371 www.riello.it

